US009338294B2

a2z United States Patent (10) Patent No.: US 9,338,294 B2
Crist 45) Date of Patent: May 10, 2016
(54) AUTOMATED TASK DEFINITIONS 6,731,724 B2* 5/2004 Wesemann et al. 379/88.16
6,873,693 B1* 3/2005 Langseth G06Q 10/10
(71) Applicant: Nuapce Communications, Inc., 7,590,224 B1* 9/2009 Gorinetal. 3;252%?;
Burlington, MA (US) 8,130,918 B1* 3/2012 Zirngibl ... HO4M 3/42153
379/69
(72) Inventor: Sean J. Crist, Arlington, MA (US) 8,607,138 B2* 12/2013 Harold GO6F 1%370/2(5)‘9‘
(73) Assignee: Nuance Communications, Inc., OTHER PUBLICATIONS
Burlington, MA (US)
http://en. wikipedia.org/wiki/Kernighan%E2%80%93Lin__algo-
(*) Notice: Subject to any disclaimer, the term of this rithm “Kernighan-Lin algorithm”, retrieved from Internet Jan. 22,
patent is extended or adjusted under 35 2014.
U.S.C. 154(b) by 105 days.
* cited by examiner
(21) Appl. No.: 14/162,014
Primary Examiner — Joseph T Phan
(22) Filed: Jan. 23, 2014 (74) Attorney, Agent, or Firm — Hamilton, Brook, Smith &
Reynolds, P.C.
(65) Prior Publication Data
US 2015/0207931 A1 Jul. 23, 2015 (7 ABSTRACT
Task analysis of an interactive communication system (ICS)
(51) Int.ClL can be performed manually. Manual task analysis is costly
HO04M 1/64 (2006.01) and time-consuming process. In an embodiment, a method of
HO04M 3/493 (2006.01) defining tasks within an ICS includes identifying hub node(s)
(52) US.CL to be marked as unavailable from consideration as nodes
CPC ... HO4M 3/493 (2013.01); HO4M 2203/355 within a task. The at least one hub node can be within a
(2013.01) directed graph representing flows through an ICS. The
(58) Field of Classification Search method further includes, from available nodes, automatically
CPC combination set(s) only. identifying a connected subgraph that corresponds to nodes
See application file for complete search history. representing an area of functionality defining a task within the
ICS. The method additionally includes repeating the identi-
(56) References Cited fying of the connected subgraph at least one time. The method

U.S. PATENT DOCUMENTS

5,027,384 A * 6/1991 Morganstein HO04M 3/436
379/207.05
5,222,125 A * 6/1993 Creswell HO04M 3/4228
379/114.05
5,864,605 A * 1/1999 Keshav 379/88.01

200\
AUTHORIZATION

TSK
210~

HEAR BALANGE
TASK

240 \

APPLICATION
GRAPH
202

MAKE
PAYMENT
TASK
230

\

Y|
m 0

also includes outputting an indicator of the at least one hub
node identified and the connected subgraphs that represent
corresponding areas of functionality defining respective
tasks. Therefore, task analysis is improved by extracting task
definitions from the graph data automatically.

20 Claims, 12 Drawing Sheets

TRANSFER
FUNDS TASK

[220

US 9,338,294 B2

Sheet 1 of 12

May 10, 2016

U.S. Patent

0ck
H3sn

oov\

L "Old

v.:\

3TNAOK
NOILVINIS3dd

O—91

NOILINI43d
ASVL

h SNOILYZINOLSND

N:M_

SNOILINIF3Q
SMSVL

ITINAON

ITNAON

H3IAYIS ISNOJSTY
JOI0A FAILOVHALNI

NOILINI43a ¥SVL M_
801

o:\

HdVdO
NOILYJINddY

@OFk

ONIATING HAVYO M_
vol

(S)3114 901

Nor\

US 9,338,294 B2

Sheet 2 of 12

May 10, 2016

U.S. Patent

¢ Old

90z 0z
Eozjs Yol
3HSNYHL INANAVd
1222 HIISNYAL . DIV
JER 0 /
yzez -
e ks / pere
» - L\ ¥0 dw
S04 LA ¢ du
I\
8722 ~ szez \\// \ qzee
00l 20h ¢0 dw wo duw
*® BZEe
oz j— =)
hp W0
mmmmk qeee
INTWNIYW [<
\ b0z
02 300N NI NIV /
YOVL SONN4
2z [‘ae
e ~—o1z
\e
212 YSYL
N \ NOILYZI4OHLNY

J0ON LHv1S

€0 QU

t oz

04y

t e

Wy

mevN

K ore

SYL

JONYTvE HYIH

N 7

c0¢
HdYH9
NOILYOINddY

US 9,338,294 B2

Sheet 3 of 12

May 10, 2016

U.S. Patent

€ 'OlId
90¢ 0ce
EOZEU Yol
YIIONYHL INTWAY
I
jeee MISNYNL et~
o0l
J ,4/ w0 bzee 90 duw
et 0n / J0dw pzee
bt A X -
- 0 /—Peee - 0 €0 qy
] /mo dw 7y /omvm
azze = —_— \\// \ qeee
} - d 20 qY
} AR 60 duw 20 du
> A e 1 Nqere
orze” | ommm// - H -
0 10~ dw QY
ezze qzze \ezpe
MINTW NIV
0ze 0g
¥SYL SANM JOON NNTW NIYW o
HFSNVAL - ore
g0 ne ¢ ne
JONVVE UY3H
oﬁm\ X \ KQNS
10 Ne
/ 0Lg
TARS oYL
4 \ NOILYZIMOHLNY
JOON L¥VLS

Vfoom

¢0€
Hdvdo
NOILYOIddY

US 9,338,294 B2

Sheet 4 of 12

May 10, 2016

U.S. Patent

¥ '9Id
90¥ ey
JOONTIVO Syl
YI4SNYYL INFNAYd
I
see jeer~
80
5 A 14/ = (A%% 90-du
6zey ” L\
i W0 ok) du 0 Oy
moﬁs \ U /modE A /'om.v.v
3 \ ey
pili w N s
- - - ~dul
o0 n a8 £0 QE/ \No e 7y //QNSu
| ONQV W0 dw \\ W0 ay
L
NNN.Vk qezy KmN._w._w
0zy 4 -
YSvL SANN4 JA0N NN NIVIY obp
¥I4SNVYL
£0 ne C JONYTVE HY3H
N A N AT
e 0Ly
i \ rmN; vl
N\ NOILYZIMOHLNY

JAON LYLS

/oow

2o
Hdv49
NOILYOINddY

US 9,338,294 B2

Sheet 5 of 12

May 10, 2016

U.S. Patent

ASYLSANNS
H3ISNvL

g 'Ol

909
300N TI¥
HIISNVHL

0€s
Ayl
INIWAvd
YN

300N L4vLS

0rs
HSYL
JONVTYE HyIH

ﬂoom

¢0S
Hdv49
NOILYOI1ddY

US 9,338,294 B2

Sheet 6 of 12

May 10, 2016

U.S. Patent

a2¢9

Bge9

0c9
%SYLSONNA
H3SNYHL

9 'OId

909
300N T1¥
H34SNVL

Jra%)
Bze9

pzz9
0229
709
300N AN N
o0 20 1
g el 19
e
30N 1YL

0€9

AWl
ININAYd

B!

QY
+ Loz

a0y
} \aev

00y
\ezrg

0¥9
ASvlL

JONVTVE ¥V

019
ASYL
NOILYZIHOHLNY

009

<09
HdYY9
NOILYOIddY

US 9,338,294 B2

Sheet 7 of 12

May 10, 2016

U.S. Patent

jrad)

yzzL
bzz.
pzeL
acel
0z72L
eecL qzel
0zL 0L
YSYL SONNA JGON NN NIV
H3ISNVAL
oL
il
JOON LYV1S

yAR =
90, 0s4
JQONTIVY Syl
H345NVHL INTFWAYD
VW
JceL
Bz
peet
80 Y
A, foNE
0y
K
1 \azrs
10 qy
meﬁ
07
ASYL
JONYIVE dY3IH
qell
0L
ecll ASVL
NOILVZIMOHLNY

Lo

20,
HdY49
NOILYOITddY

US 9,338,294 B2

Sheet 8 of 12

May 10, 2016

U.S. Patent

8 'Old

0¢c8
ASYL

908
JAONTT¥O
H3SNWHL

YSYL SANNS
H34SNVAL

ASYL
JONV VA HV3H

018
ASvl
NOILYZIMOHLNY

718
JAON LHv1S

/oow

208
Hdvdo
NOILYOMddY

U.S. Patent

May 10, 2016

Sheet 9 of 12 US 9,338,294 B2

[900
> _PAINTALL NODES WHITE 902

Y
IDENTIFY NODES OF GRAPHWITHA
HIGH IN-DEGREE AS HUB NODE(S)

Y

—904

| PAINT HUB NODES BLACK I—/“908

f91 0

APPLY USER
CUSTOMIZATIONS
FROM BLUEPRINT

»| SCORE REMAINING WWHITE NODES |-«

Y

SELECT NODE WITH BEST SCORE

—914

(.., LOWEST) OF REMAINING WHITE NODES

Y

IDENTIFY ALL NODES REACHABLE FROM SELECTED

NODE AS BEING PART OF THE SAME TASK 916

Y
PAINT ALL NODES REACHABLE
FROM SELECTED NODE BLACK

920

—918

DOANY

YES .~ WHITE NODES

930

ARE USER
CUSTOMIZATIONS
INDICATED IN
BLUEPRINT
?

YES

APPLY CUSTOMIZATIONS
T0 GRAPH

\‘932

REMAIN
?

NO
PRESENT TASKS TO USER
IN BLUEPRINT FILE

Y
ACCEPT USER CUSTOMIZATIONS IN
BLUEPRINT FILE OR ACCEPTANCE

926

——922

——024

928

REPORT TASK
IDENTIFICATIONS

AREUSER

CUSTOMIZATIONS

ENTERED
?

NO

YES

FIG. 9

U.S. Patent May 10, 2016 Sheet 10 of 12 US 9,338,294 B2

1000\\

IDENTIFY AT LEAST ONE HUB NODE TO BE
MARKED AS UNAVAILABLE FROM CONSIDERATION
AS NODES WITHIN A TASK, WHERE THE AT LEAST
ONE HUB NODE IS WITHIN ADIRECTED GRAPH
REPRESENTING FLOWS IN AN ICS

1002

Y

FROM AVAILABLE NODES, AUTOMATICALLY

IDENTIFY A CONNECTED SUBGRAPH THAT

CORRESPONDS TO NODES REPRESENTING j——1004

AN AREA OF FUNCTIONALITY DEFINING A
TASK WITHIN THE ICS

Y

REPEAT THE IDENTIFYING OF THE
CONNECTED SUBGRAPH AT LEAST 1006
ONE TIME

OUTPUT AN INDICATOR OF THE AT LEAST
ONE HUB NODE IDENTIFIED AND THE CONNECTED
SUBGRAPHS THAT REPRESENT CORRESPONDING
AREAS OF FUNCTIONALITY DEFINING
RESPECTIVE TASKS

I

1008

FIG. 10

U.S. Patent May 10, 2016 Sheet 11 of 12 US 9,338,294 B2

1]
L

FIG. 11

US 9,338,294 B2

Sheet 12 of 12

May 10, 2016

U.S. Patent

¢l "Old
¥6 76
vlva vlva
<= <
26— 1NVHO0¥d SO ¢6—11 3NILNOY
JOVHOLS MSId AHOW3IN
mm\ om\
o)
SNg NILSAS
_ JOV4H3LNI 1IND JOV4H3LNI
H0SS3004d
MHOMLAN TYMINID S32IA3A O/

ow\
09 _om\\

o/

s/

US 9,338,294 B2

1
AUTOMATED TASK DEFINITIONS

BACKGROUND

Graphs are a collection of nodes connected by connections
or arcs, and can have different properties. For example, an
unconnected graph is a graph where not every node in the
graph is reachable from every other node in the graph. To
contrast, a connected graph is a graph where every node is
reachable from any other node. In an unconnected graph,
connections between nodes have no directional properties
(e.g., the connections are bidirectional). In a directed graph,
the connections between nodes have directional properties
(e.g., each connection is for a one-way particular direction),
but any two nodes can, in effect, emulate or mimic a bidirec-
tional connection by having two connections, each connec-
tion being in a particular direction. A graph with a cycle is a
graph in which a traversal path exists such that a node can be
reached more than once on a walk of the graph. An acyclic
graph is a graph in which no such traversal path exists.

A node (e.g., Node A) of a graph is considered “reachable”
from another node (e.g., Node B) if a traversal path exists
along the graph from Node B to Node A. A node (e.g., Node
A)ofagraphis considered “not reachable” from another node
(e.g., Node B) if no traversal path exists along the graph from
Node B to Node A.

Each node of a graph has an “in-degree” property and an
“out-degree” property. A node’s “in-degree” is the number of
arcs (e.g., connections) leading into the node. A node’s “out-
degree” is the number of arcs (e.g., connections) leading from
the node to other nodes.

A hierarchy graph (e.g., hierarchy) is a type of connected
acyclic directed graph. A hierarchy has exactly one root node,
which is a node with an in-degree of zero. All other nodes of
the hierarchy graph have an in-degree of exactly one. A well-
known example of a hierarchy is the directory structure of
most computer file systems.

A breadth-first search receives a directed graph in which all
of’its nodes are reachable from some start node as an input and
outputs a hierarchy graph as an output. The input directed
graph can contain loops and other properties that are not
allowable in a hierarchy. A breadth-first tree is the hierarchy
produced from the breadth-first search. The breadth-first tree
graph is a hierarchy directed graph that is connected with a
start node, where all other nodes of the graph are reachable
from the start node.

SUMMARY

In an embodiment, a method of defining tasks within an
interactive communications system (ICS) includes identify-
ing at least one hub node to be marked as unavailable from
consideration as nodes within a task. The at least one hub
node can be within a directed graph representing flows
through an ICS. The method further includes, from available
nodes, automatically identifying a connected subgraph that
corresponds to nodes representing an area of functionality
defining a task within the ICS. The method additionally
includes repeating the identifying of the connected subgraph
at least one time. The method also includes outputting an
indicator of the at least one hub node identified and the con-
nected subgraphs that represent corresponding areas of func-
tionality defining respective tasks.

In another embodiment, the method identifies at least zero
hub nodes to be marked as unavailable from consideration as
nodes within the task. A “hub node” is a node with an in-
degree of a configurable number or higher. An in-degree is the

20

25

35

40

45

2

number of incoming connections/arcs to the particular node
(that node from the other nodes).

In an embodiment, identifying the connected subgraph can
include computing a score of each available subgraph in the
directed graph. The score can be based on depth ofa start node
of the subgraph within the directed graph (i.e., the distance
from the root node of the graph to the task start node) and a
size of the area of functionality. The directed graph can rep-
resent flows through an ICS based on a call history by callers
with the ICS or a specification of the ICS. The method can
further include retrieving the call history from a log file.

In an embodiment, the method further includes enabling
user input to be submitted to adjust identification of the nodes
within the directed graph or finalize identification of tasks.
The method additionally includes repeating the identifying
based on the user input.

Each connected directed subgraph can include a start node
from which all other nodes in the connected directed sub-
graph can be reached either directly or via nodes of the con-
nected directed subgraph.

The method can further include converting outputted iden-
tified hub nodes and identified defined connected subgraphs
to an extensible mark-up language arrangement of statements
and/or a usage and flow diagram.

In an embodiment, a system for defining tasks within an
interactive communications system (ICS) can include an
identification module configured to identify at least one hub
node to be marked as unavailable from consideration as nodes
within a task. The at least one hub node can be within a
directed graph representing flows through an ICS. The iden-
tification module can be further configured to, from available
nodes, automatically identify a connected subgraph that cor-
responds to nodes representing an area of functionality defin-
ing a task within the ICS. The system can further include a
looping module configured to repeat the identifying of the
connected subgraph at least one time. The system can addi-
tionally include an output module configured to output an
indicator of the at least one hub node identified and the con-
nected subgraphs that represent corresponding areas of func-
tionality defining respective tasks.

In an embodiment, a non-transitory computer-readable
medium can be configured to store instructions for defining
tasks within an interactive communication system (ICS). The
instructions, when loaded and executed by a processor, can
cause the processor to identify at least one hub node to be
marked as unavailable from consideration as nodes within a
task. The at least one hub node can be within a directed graph
representing flows through an ICS. The instructions can fur-
ther cause the process to, from available nodes, automatically
identify a connected subgraph that corresponds to nodes rep-
resenting an area of functionality defining a task within the
ICS. The instructions can further cause the processor to repeat
the identifying of the connected subgraph at least one time.
The instructions can additionally cause the processor to out-
put an indicator of the at least one hub node identified and the
connected subgraphs that represent corresponding areas of
functionality defining respective tasks.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more
particular description of example embodiments of the inven-
tion, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout
the different views. The drawings are not necessarily to scale,
emphasis instead being placed upon illustrating embodi-
ments of the present invention.

US 9,338,294 B2

3

FIG. 1 is a block diagram illustrating an example embodi-
ment of the present invention.

FIG. 2 is a diagram illustrating an example embodiment of
an application graph.

FIG. 3 is a diagram illustrating an example embodiment of
an application graph in an initialization state.

FIG. 4 is a diagram illustrating an example embodiment of
an application graph after the identified hub nodes have been
painted black.

FIG. 5 is a diagram illustrating an application graph after
painting nodes reachable from a first task start node black.

FIG. 6 is a diagram illustrating an application graph after
painting nodes reachable from a second task start node black.

FIG. 7 is a diagram illustrating an application graph after
painting nodes reachable from a third task start node black.

FIG. 8 is a diagram illustrating an application graph after
painting nodes reachable from a fourth task start node black.

FIG. 9 is a flow diagram illustrating an example embodi-
ment of the present invention.

FIG. 10 is a flow diagram illustrating an example embodi-
ment of a process employed by the present invention.

FIG. 11 illustrates a computer network or similar digital
processing environment in which embodiments ofthe present
invention may be implemented.

FIG. 12 is a diagram of an example internal structure of a
computer (e.g., client processor/device or server computers)
in the computer system of FIG. 11.

DETAILED DESCRIPTION

A description of example embodiments of the invention
follows.

Interactive voice response (IVR) menu systems can be
represented as a directed connected graph. Fach node of the
graph represents a state, such as a menu state (e.g., a dialogue
module), a database state, a play prompt state, or a decision
state, and each connection between nodes represents a path
the IVR can direct the user from that node to a next state, such
as menu state, for example, upon a user input. The graph can
further have a beginning node (e.g., a main menunode) and an
exit node (e.g., atransfer to a human/IVR initiated disconnect
node). For analysis, IVR menu systems can be analyzed by
converting a log file of the IVR into a directed connected
graph representing the IVR menu system and determining
which nodes of the graph correspond to certain tasks a user
may wish to perform with the IVR system.

FIG. 1 is a block diagram 100 illustrating an example
embodiment of the present invention. In an embodiment of
the present invention, a system and corresponding method
develops task definitions from the graph data, instead of
imposing task definitions onto the graph manually. Generally,
embodiments of the present system and method partition the
graph ofthe IVR menu system into sub-graphs corresponding
to tasks which a human can then define.

An IVR server 102 can forward a log file 104 to a graph
building module 106. The log file 104 includes records of
calls to the IVR and user navigation through a menu system
thereof. The graph building module 106 then builds an appli-
cation graph 108 indicative of the menu system of the IVR
server 102 based on records of calls in the log file 104. The
application graph 108 can be a directed connected graph.

The graph building module 106 forwards the application
graph 108 to a task definition module 110. The task definition
module 110 analyzes the application graph 108 using the
methods described herein and outputs task definitions 112 to
apresentation module 114. A user of the presentation module
114 reviews the task definitions 112, and if they are satisfac-

25

30

40

45

4

tory, he can accept them. If the task definitions 112 are unac-
ceptable, the user 120 can enter task definitions customiza-
tions 116 to the presentation module 114. The task definitions
module 110 then redefines the tasks based on the application
graph 108 and the task definition customizations 116 to out-
put new task definitions 112 to the presentation module 114.
The user 120 can continue to enter additional task definition
customizations for plurality of iterations until the user 120 is
satisfied with the task definitions 112.

FIG. 2 is a diagram 200 illustrating an example embodi-
ment of an application graph 202. The application graph 202
can be derived from a log file, for example by the graph
building module 106 converting log files 104 into an appli-
cation graph 108, in reference to FIG. 1. Nodes 212a-c¢ and
start node 214 are part of an authorization task 210, nodes
222a-h are part of a transfer funds task 220, nodes 2324-g are
part of a make payment task 230, nodes 2424a-c are part of a
hear balance task 240, and a main menu node 204 and a
transfer call node 206 do not belong to any task graphing. This
is the ideal task configuration of the application graph 202.
However, a person of ordinary skill in the art can recognize
that the application graph 202 alone does not include the
groupings of authorization task 210, transfer funds task 220,
make payment task 230, and hear balance task 240, or indi-
cations thereof, without performing analysis on the graph.
Rather, based on the application graph 202 being agnostic of
the authorization task 210, transfer funds task 220, make
payment task 230, and hear balance task 240, the present
system and method determines groupings of the task. The
present system and method partitions the application graph
202 to determine the task groupings of nodes of the graph.

FIGS. 3-8 illustrate an example embodiment of the parti-
tioning of a graph to determine tasks. Methods exist to parti-
tion graphs; however, no existing method is suited to finding
sub-graphs representing tasks in a subgraph. For example, the
Kernighan-Lin method partitions a graph into two sub-graphs
of'equal sizes, such that the number of edges connecting the
two subgraphs is minimized. However, tasks can be repre-
sented in sub-graphs of various sizes, not necessarily equal
sizes. Therefore, Kernighan-Lin is not suited for this appli-
cation.

In social media networks that are represented by graphs,
individuals can typically have around 50-250 (or more)
friends, each friend belonging to a tightly clustered neighbor-
hood. Each neighborhood can represent, for example, high
school classmates, college classmates, co-workers, etc.
Famous people (e.g., politicians or celebrities) can have
larger networks (e.g., 100,000 or more friends) across many
local neighborhoods. If the nodes with high degrees of con-
nectedness are removed from the graph, the graph falls apart
into mostly unconnected pieces. Therefore, the highly con-
nected nodes are not informative in terms of finding sub-
graphs representing meaningfully related small neighbor-
hoods. Removing the highly connected nodes can isolate the
network into meaningfully connected neighborhoods. Just as
nodes in a social network can represent popular people, nodes
in an IVR system can represent popular I[VR states.

In the context of task definition, a defined task does not
typically include a main menu, even though the main menu
may be reachable from other nodes in the task that should be
included (e.g., each task and multiple nodes may have a
“return to main menu” option, but the task should not include
the main menu node). Therefore, a “hub node” is a node with
an in-degree of seven or higher. The in-degree number can be
configurable to be any number; however, in embodiments, the
in-degree of seven or higher is effective. A hub node there-
fore, can commonly be a main menu node, which typically

US 9,338,294 B2

5

has many in-connections for “return to main menu” options or
a transfer node, which can have many in-connections for a
“speak to a human” option, or any other node with a high
in-degree.

FIG. 3 is a diagram 300 illustrating an example embodi-
ment of an application graph 302 in an initialization state.
Using the hub node concept, the graph partition method of an
embodiment of the present invention is as follows. First, the
system initializes by painting all the nodes 304, 306, 312a-c,
314, 322a-h, 332a-g, and 342a-c of the application graph 302
white, for example, by setting a property of the node to
“white.” Other variables or variable settings can be employed
to set the property of the nodes, such as a Boolean variable.

FIG. 4 is a diagram 400 illustrating an example embodi-
ment of an application graph 402. The system identifies hub
nodes (e.g., main menu node 404 and transfer call node 406)
in the graph and paints the hub nodes (e.g., main menu node
404 and transfer call node 406) black. The hub nodes (e.g.,
main menu node 404 and transfer call node 406) each have
in-degrees higher than seven, which can be determined by
counting the number of in-arc/connections to each respective
node. A node that is painted black is not available to be added
to any new task. Further, determining which nodes are reach-
able from a given nodes ends the search at a black node.

After determining the hub nodes and painting them black,
the system then finds a candidate start node of the remaining
white nodes 412a-d, 414, 422a-h, 432a-g and 442a-c. The
system gives each white node 412a-d, 414, 422a-h, 432a-g
and 442a-c a score based on three factors: (1) A reachability
score: how many nodes are in the task; (2) depth: how deep
the start node is in the graph (e.g., how far away is it from the
start node); and (3) a penalty: assessing a penalty score for
smaller tasks. The total score can be expressed by
score=ReachabilityScore*Depth*Penalty, where a lower
score is better, and the node with the best score is processed
first.

In providing a sub-score for how many nodes are in the
task, a target number is employed as an ideal number of nodes
for the task, and if the task is greater or smaller than that
number, the task is penalized by the score being increased.
For example, in an embodiment, the ideal number of nodes is
15 nodes. Therefore, the sub-score for how many nodes in the
task can be expressed as |Ideal Value-Size of Taskl+1 or,
[15-Size of Taskl+1. Therefore, a size of 16 has a higher
sub-score than 17, a size of 14 has a higher sub-score than 22,
and a size of 13 has the same sub-score as a size of 17.

The sub-score related to depth indicates a preference for
task start nodes with shallower depth over deeper depth. The
depth of a node is the number of nodes which are traversed on
the shortest path from the start node to the node in question.
The depths of the nodes in a directed graph can be computed
with a breadth-first search. The breadth-first search produces
a hierarchy in which the depth of each node is implicit in the
structure of the hierarchy. The sub-score related to depth
indicates a preference for shallower nodes because an indi-
vidual task may contain a loop, which means that there may
be more than one node in a task from which all other nodes in
the task are reachable. The true start node of the task is most
commonly that node in the task which has the shallowest
depth within the directed graph representing the totality of the
application.

In providing the penalty sub-score, a penalty is assessed for
small sub-graphs. By providing a penalty, shallow tasks with
large breadths can be grouped as one task, instead of many
individual task for each shallow branch. Therefore, the sys-
tem determines a “reachability count” for each node, which is
defined as “how many nodes can be reached before reaching

10

15

20

25

30

40

45

50

55

60

65

6

a black node.” If the reachability count is 1, the penalty is
10,000. If the reachability count is 2, the penalty is 1,000. If
the reachability count is 3, the penalty is 100. If the reach-
ability count is 4, the penalty is 10. If the reachability count is
5 or higher, the penalty is 1 (e.g., no penalty). The weights of
the penalties corresponding to the reachability counts can be
changed in embodiments of the system, however.

For example, node 4224 has a depth of 5 from start node
414, has a reachability score of 8 based on its task size of 8
(e.g., 18-1514+1=8), and a penalty of 1 since the size of the
task, determined by the number of nodes reachable from node
422a before reaching a black node is eight, and therefore
greater than or equal to 5. Therefore, the score of node 4224
is 5*8*1=40. A node that is not the start node of a task, such
as node 4225, is still scored by the system, but always has a
higher score than the start node of a task because its reach-
ability score and penalty are the same as the start node, but its
depth is at least one greater. Therefore, its score is higher and
the start node is considered before the second (or greater)
node in the task. Once the start node is considered, the second
node is colored black as part of the task and not considered in
later scorings.

As another example, node 432a has a depth of 5 from start
node 414, has a reachability score of 9 based on its task size
of7 (e.g.,17-151+1=9), and a penalty of 1 since the size of the
task, determined by the number of nodes reachable from node
432a before reaching a black node is seven, and therefore
greater than or equal to 5. Therefore, the score of node 4324
is 5*9*1=45.

As yet another example, start node 414 has a depth of 1
from start node 414 (itself), has a reachability score of 11
based on its task size of 5 (e.g., 15-151+41=11), and a penalty
ot 10 since the size of the task, determined by the number of
nodes reachable from node 414 before reaching a black node
is four. Therefore, the score of node 414 is 1*11*10=110.

As another example, node 442a has a depth of 5 from start
node 414, has a reachability score of 13 based on its task size
of3 (e.g.,13-151+1=13), and a penalty of 100 since the size of
the task, determined by the number of nodes reachable from
node 442a before reaching a black node is three. Therefore,
the score of node 442a is 5¥13*100=6,500.

The system defines each task and, upon completion, marks
all the nodes of the task as black so they are not searched
again. The system defines tasks by, for a given white node,
Node X, in the graph, making Node X a start state of a new
task. Then, the system finds all nodes reachable from Node X
and adds them to the task. These nodes are then painted black.
Therefore, based on the scores, the system defines each task
starting at nodes 422a (score of 40), 4324 (score of 45), 414
(score of 110), and 4424 (score of 6,500), in that order.

FIG. 5 is a diagram 500 illustrating an application graph
502 after painting nodes reachable from node 522a black.
Node 522a corresponds with node 422a of FIG. 4, has the
lowest score of all the nodes, and therefore is processed first.
The system walks all nodes reachable from 522a and paints
the nodes 522a-# black as it walks until no white nodes are
reachable.

FIG. 6 is a diagram 600 illustrating an application graph
602 after painting nodes reachable from node 6324 black.
Node 632a corresponds with node 432a of FIG. 4, has the
lowest remaining score of all the white nodes since nodes
622a-/ (corresponding with node 5224a-#) are colored black,
and therefore is processed next. The system walks all nodes
reachable from 632a and paints the nodes 632a-fblack as it
walks until no white nodes are reachable.

FIG. 7 is a diagram 700 illustrating an application graph
702 after painting nodes reachable from node 714 black.

US 9,338,294 B2

7

Node 714 corresponds with node 414 of FIG. 4, has the lowest
remaining score of all the white nodes since nodes 722a-/
(corresponding with node 5224a-%) and nodes 732a-g (corre-
sponding with nodes 632a-g) are colored black, and therefore
is processed next. The system walks all nodes reachable from
714 and paints the nodes 714 and 714a-c black as it walks
until no white nodes are reachable.

FIG. 8 is a diagram 600 illustrating an application graph
802 after painting nodes reachable from node 842a black.
Node 8424 corresponds with node 4424 of FIG. 4, has the
lowest remaining score of all the white nodes because nodes
822a-h (corresponding with node 522a-#), nodes 832a-g
(corresponding with nodes 632a-g), start node 814 and nodes
812a-c¢ (corresponding to start node 714 and nodes 712a-c)
are colored black, and therefore is processed next. The system
walks all nodes reachable from 842« and paints the nodes
842a-c black as it walks until no white nodes are reachable.

For the initial automatic task definitions, the system (e.g.,
task definition module 110 of FIG. 1) receives an arc list of the
application graph 108. After the first run, the system outputs
a list of hub nodes and task definitions (e.g., task definitions
112 of FIG. 1) and a blueprint file. The user can then edit the
blueprint file to adjust the processing of the application graph
108. The system can then receive both the user-modified
blueprint file and the arc list of the application graph 108 and
reprocess the graph based on the user’s instructions. An
example of editing the blueprint file is including a command
to paint a particular node white or black at a different time
than the system determined. A user may want to manually
paint a node black, for example, ifit is part of a small task that
is hard to process.

FIG. 9 is a flow diagram 900 illustrating an example
embodiment of a process employed by the present invention.
The process begins by painting all nodes of an application
graph white (902). The process then identifies nodes of the
application graph with a high in-degree as hub node(s) (904).
A high in-degree of a given node is number of arcs or con-
nections above a given threshold directed towards the given
node. In an embodiment, the given threshold is seven or
higher. The process then paints the hub nodes black (908).

The process then determines whether user customizations
in a blueprint file have been directed to the initialization
(906). User customizations are not typically applied during
the first time processing an application graph, but are added
by a user after the first run (e.g., see 924 of FIG. 9). A
customization to the initialization can include marking a par-
ticular node as a hub node or excluding a node from being
marked as a hub node. If a customization is made, the process
applies the user customizations from the blueprint to the
graph, for example, by painting a node as white or black as
indicated in the blueprint file (910).

If no customization is indicated (906), the process scores
the remaining white nodes (912). Then, the process selects the
node with the best score, which in one embodiment is the
lowest score, of the remaining white nodes (914). Then, the
process identifies all nodes reachable from the selected node
as being part of the same task (916). The process then paints
all nodes reachable from the selected node (e.g., nodes of the
identified task) black (918).

The process then determines if any white nodes remain in
the graph (920). If so, the system determines if any user
customizations are indicated in the blueprint for this point of
processing the graph (930). If so, the process applies the
customizations to the graph (932). The customizations can
include including additional nodes in the identified task by

25

35

40

45

8

painting the nodes black or excluding nodes from the task by
painting them white. The process scores remaining white
nodes (912).

If no white nodes remain (920), then the process presents
the identified task to the user in a blueprint file (922). The
process can then accept user entered customizations in a
blueprint file or user acceptance of the task (924). If user
customizations are entered (926), the process re-processes
the graph applying the customizations, starting by painting all
nodes white (902). If the user accepts the identified tasks
(926), the process reports the task identifications (928). From
there, the user can give each identified task a name and pro-
duce additional analytics about the ICS system.

FIG. 10 is a flow diagram 1000 illustrating an example
embodiment of a process employed by the present invention.
The process begins by identifying at least one hub node to be
marked as unavailable from consideration as nodes within a
task (1002). The hub node(s) are within a directed graph
representing flows in an ICS. Then, from available hub nodes,
the system automatically identifies a connected subgraph that
corresponds to nodes representing an area of functionality
defining a task within the ICS (1004). Then, the process
repeats the identifying of the connected subgraph at least one
time (1006). Then, the process outputs an indicator of the at
least one hub node identified and the connected subgraphs
that represent corresponding areas of functionality defining
respective tasks (1008).

FIG. 11 illustrates a computer network or similar digital
processing environment in which embodiments ofthe present
invention may be implemented.

Client computer(s)/devices 50 and server computer(s) 60
provide processing, storage, and input/output devices execut-
ing application programs and the like. The client com-
puter(s)/devices 50 can also be linked through communica-
tions network 70 to other computing devices, including other
client devices/processes 50 and server computer(s) 60. The
communications network 70 can be part of a remote access
network, a global network (e.g., the Internet), a worldwide
collection of computers, local area or wide area networks, and
gateways that currently use respective protocols (TCP/IP,
Bluetooth®, etc.) to communicate with one another. Other
electronic device/computer network architectures are suit-
able.

FIG. 12 is a diagram of an example internal structure of a
computer (e.g., client processor/device 50 or server comput-
ers 60) in the computer system of FIG. 11. Each computer 50,
60 contains a system bus 79, where a bus is a set of hardware
lines used for data transfer among the components of a com-
puter or processing system. The system bus 79 is essentially
a shared conduit that connects different elements of a com-
puter system (e.g., processor, disk storage, memory, input/
output ports, network ports, etc.) that enables the transfer of
information between the elements. Attached to the system bus
79 is an I/O device interface 82 for connecting various input
and output devices (e.g., keyboard, mouse, displays, printers,
speakers, etc.) to the computer 50, 60. A network interface 86
allows the computer to connect to various other devices
attached to a network (e.g., network 70 of FIG. 10). Memory
90 provides volatile storage for computer software instruc-
tions 92 and data 94 used to implement an embodiment of the
present invention (e.g., selection module, presentation mod-
ule and labeling module code detailed above). Disk storage
95 provides non-volatile storage for computer software
instructions 92 and data 94 used to implement an embodiment
of the present invention. A central processor unit 84 is also
attached to the system bus 79 and provides for the execution
of computer instructions. The disk storage 95 or memory 90

US 9,338,294 B2

9

can provide storage for a database. Embodiments of a data-
base can include a SQL database, text file, or other organized
collection of data.

In one embodiment, the processor routines 92 and data 94
are a computer program product (generally referenced 92),
including a non-transitory computer-readable medium (e.g.,
a removable storage medium such as one or more DVD-
ROM’s, CD-ROM’s, diskettes, tapes, etc.) that provides at
least a portion of the software instructions for the invention
system. The computer program product 92 can be installed by
any suitable software installation procedure, as is well known
in the art. In another embodiment, at least a portion of the
software instructions may also be downloaded over a cable
communication and/or wireless connection.

The teachings of all patents, published applications and
references cited herein are incorporated by reference in their
entirety.

While this invention has been particularly shown and
described with references to example embodiments thereof, it
will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the scope of the invention encompassed by the
appended claims.

What is claimed is:

1. A method of defining tasks within an interactive com-
munication system (ICS), the method comprising:

identifying at least one hub node to be marked as unavail-

able from consideration as nodes within a task, the at
least one hub node being within a directed graph repre-
senting flows through an ICS;
from available nodes, automatically identifying a con-
nected subgraph that corresponds to nodes representing
an area of functionality defining a task within the ICS;

repeating the identifying of the connected subgraph at least
one time; and

outputting an indicator of the at least one hub node identi-

fied and the connected subgraphs that represent corre-
sponding areas of functionality defining respective
tasks.

2. The method of claim 1, wherein identifying the con-
nected subgraph includes computing a score of each available
subgraph in the directed graph.

3. The method of claim 2, wherein the score is based on
depth of a start node of the subgraph within the directed graph
and a size of the area of functionality.

4. The method of claim 1, wherein the directed graph
represents flows through an ICS based on a call history by
callers with the ICS or a specification of the ICS.

5. The method of claim 4, further comprising retrieving the
call history from a log file.

6. The method of claim 1, further comprising:

enabling user input to be submitted to adjust identification

of the nodes within the directed graph or finalize iden-
tification of tasks; and

repeating the identifying based on the user input.

7. The method of claim 1, wherein each connected directed
subgraph includes a start node from which all other nodes in
the connected directed subgraph can be reached either
directly or via nodes of the connected directed subgraph.

8. The method of claim 1, further comprising converting
outputted identified hub nodes and identified defined con-
nected subgraphs to at least one of the following: extensible
mark-up language arrangement of statements or a usage and
flow diagram.

10

—_
w

20

25

30

35

40

45

50

55

60

65

10

9. A system for defining tasks within an interactive com-
munication system (ICS), the system comprising:

an identification module configured to identify at least one
hub node to be marked as unavailable from consider-
ation as nodes within a task, the at least one hub node
being within a directed graph representing flows through
an ICS and further configured to, from available nodes,
automatically identify a connected subgraph that corre-
sponds to nodes representing an area of functionality
defining a task within the ICS;

a looping module configured to repeat the identifying of
the connected subgraph at least one time; and

an output module configured to output an indicator of the at
least one hub nodes identified and the connected sub-
graphs which represent corresponding areas of function-
ality defining respective tasks.

10. The system of claim 9, wherein the identification mod-
ule is further configured to compute a score of each available
subgraph in the directed graph.

11. The system of claim 10, wherein the score is based on
depth of a start node of the subgraph within the directed graph
and a size of the area of functionality.

12. The system of claim 9, wherein the directed graph
represents flows through an ICS based on a call history by
callers with the ICS or a specification of the ICS.

13. The system of claim 12, further comprising an extrac-
tion module configured to retrieve the call history from a log
file.

14. The system of claim 9, further comprising:

a user input module configured to enable user input to be
submitted to adjust identification of the nodes within the
directed graph or finalize identification of tasks; and

wherein the loop module is configured to repeat the iden-
tifying based on the user input.

15. The system of claim 9, wherein each connected
directed subgraph includes a start node from which all other
nodes in the connected directed subgraph can be reached
either directly or via nodes of the connected directed sub-
graph.

16. The system of claim 9, further comprising a conversion
module configured to convert outputted identified hub nodes
and identified defined connected subgraphs to at least one of
the following: an extensible mark-up language arrangement
of statements or a usage and flow diagram.

17. A non-transitory computer-readable medium config-
ured to store instructions for defining tasks within an interac-
tive communication system (ICS), the instructions, when
loaded and executed by a processor, causes the processor to:

identify at least one hub node to be marked as unavailable
from consideration as nodes within a task, the at least
one hub node being within a directed graph representing
flows through an ICS;

from available nodes, automatically identify a connected
subgraph that corresponds to nodes representing an area
of functionality defining a task within the ICS;

repeat the identifying of the connected subgraph at least
one time; and

output an indicator of the at least one hub node identified
and the connected subgraphs that represent correspond-
ing areas of functionality defining respective tasks.

18. The non-transitory computer-readable medium of
claim 17, wherein identifying the connected subgraph
includes computing a score of each available subgraph in the
directed graph.

19. The non-transitory computer-readable medium of
claim 18, wherein the score is based on depth of a start node
of'the subgraph within the directed graph and a size of the area
of functionality.

US 9,338,294 B2
11 12

20. The non-transitory computer-readable medium of
claim 17, wherein the directed graph represents flows through
an ICS based on a call history by callers with the ICS or a
specification of the ICS.

#* #* #* #* #*

